

INERGE inct de energia elétrica

Monitoramento de Transformadores: desafios e tendências Contato: leonidas@ufsj.edu.br

Introdução

Transformadores

- Equipamentos essenciais na transmissão e distribuição de energia elétrica;
- Melhora a eficiência do fornecimento de energia elétrica.

o Importância do Monitoramento

- Garantir a operação eficiente e segura;
- Minimizar falhas e prolongar a vida útil do equipamento.

DESAFIOS NO MONITORAMENTO DE TRANSFORMADORES

- o Complexidade técnica
 - Diversidade de tipos e configurações;
 - Necessidade de conhecimento especializado para análise e interpretação de dados.
- o Custo de Implementação
 - Investimento inicial em sistemas de monitoramento;
 - Manutenção e operação contínua das tecnologias.

DESAFIOS NO MONITORAMENTO DE TRANSFORMADORES

- o Dados em Tempo Real
 - Necessidade de sistemas que traduzam dados em tempo real em ações práticas;
 - Dificuldade em integrar diferentes fontes de dados.
- o Identificação de Falhas
 - Dificuldade em prever falhas antes que se tornem críticas;
 - Importância de análises preditivas e retroativas.

TECNOLOGIAS DE MONITORAMENTO

- Sensores e Dispositivos (IED's)
 - Sensores de Temperatura e Pressão;
 - Sensores de Vibração;
 - Análise de Gases Dissolvidos.
- Sistemas de Monitoramento Remoto
 - Acesso em tempo real através da internet;
 - Manutenção preditiva baseada em dados.

TECNOLOGIAS DE MONITORAMENTO

- Big Data e IoT
 - Coleta e análise de grandes volumes de dados para insights;
 - Integração de dispositivos IoT para monitoramento contínuo.
- o Planos de manutenção
 - Ensaios de rotina;
 - Inspeção sensitiva.

TENDÊNCIAS NO MONITORAMENTO DE TRANSFORMADORES

- o Inteligência Artificial e Machine Learning
 - Ferramentas de análise preditiva para evitar falhas;
 - Aprendizado das operações passadas para melhorar a eficiência.
- Manutenção Preditiva
 - Transição de manutenção corretiva para métodos preditivos e proativos;
 - Redução de custos e tempo de inatividade.
- o Digitalização e Adoção de Novas Tecnologias
 - Uso crescente de plataformas digitais para monitoramento;
 - Aumento da conectividade e integração de sistemas.

Benefícios do Monitoramento Eficiente

- Aumento da Longevidade dos Transformadores
- Redução de Custos Operacionais e de Manutenção
- Melhoria na Segurança Operacional
- Eficiência Energética Aumentada

RESULTADOS OBTIDOS EM PROJETOS (COMPLEXIDADE TÉCNICA)

POTÊNCIA	NORMAL	ALERTA	CRÍTICO	
>=50 KVA	0	0	0	
30 KVA < POT. < 50 KVA	1	0	0	
<= 30 KVA	0	2	1	
CLASSE DE TENSÃO	NORMAL	ALERTA	CRÍTICO	
>= 230	0	0	0	
69 KV < U < 230	0	0	0	
<= 69 KV	1	2	1	

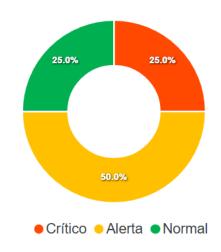
RESULTADOS OBTIDOS EM PROJETOS (FERRAMENTAS E MÉTODOS)

- Confiabilidade
 - Estimar indicadores de desempenho
- Healthy indexes:
 - Avaliar saúde dos transformadores
- Análises estatísticas dos dados
 - Métodos de regressão para encontrar tendências

RESULTADOS OBTIDOS EM PROJETOS (FERRAMENTAS E MÉTODOS)

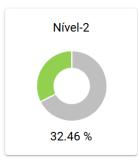
- o Simulação Monte Carlo
 - Capturar correlações entre dados
 - Simular cenários distintos
 - Considerar a natureza estocástica
- Redes neurais especializadas
 - Ampliar a abrangência de análise
 - Capturar padrões não fornecidos pelos métodos e modelos utilizados

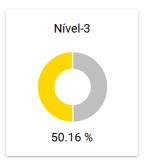
RESULTADOS OBTIDOS EM PROJETOS (VARIÁVEIS EXPLICATIVAS)


- o Custo de implementação
- Dados em tempo real
- Big data
- Sensores e IED's
- Sistemas remotos
- Armazenamento em nuvem
- o IoT
- Inspeções
- o Ensaios de rotina

Variável	Descrição	Sigla	Unidade	Valor
1	Dióxido de carbono	CO ₂	ppm	Histórico
2	Monóxido de carbono	CO	ppm	Histórico
3	Grau de polimerização	GP	monômeros	Histórico
4	Teor de água	SAT	ppm	Histórico
5	Rigidez dielétrica	RD	kV	Histórico
6	DGAF	DGAF	mg/kg	Histórico
7	Enxofre Corrosivo	EC	unid	Histórico
8	Temperatura do óleo	TEMP	$^{\circ}$ C	Histórico
9	Enxofre Elementar	EE	ppm	Histórico
10	Teor de Passivador	PASS	%	Histórico
11	Teor de Etileno	C2H4	ppm	Histórico
12	Teor de Acetileno	C2H2	ppm	Histórico
13	Tensão interfacial	TIF	Dyn/cm	Histórico
14	Teor de DBDS	DBDS	ppm	Histórico

TOTAL DE TRANSFORMADORES ANALISADOS




TAG	T. Primária (kV)	Potencia (kVA)	Status TR-Óleo	Status Analista	N1	N2	N3	N4	N5
9701	69	43	Normal	Normal	100.00%	0.00%	0.00%	0.00%	0.00%
9701	22	2	Crítico	Crítico	0.00%	0.00%	34.16%	65.84%	0.00%
	138	30	Ainda não Analisado	Ainda não Analisado					
2FTMTR01	36	1.25	Alerta	Ainda não Analisado	0.00%	0.00%	94.80%	5.20%	0.00%
2CTMTR01	34.5	1	Alerta	Ainda não Analisado	0.00%	32.46%	50.16%	17.38%	0.00%

H2O	
HZU	0%
TIF	0%
RD	0%
EC	0%
H2	0%
DBDS	0%
CARRE	0%
GP	0%
DGAF	0%
CO	0%
CO2	0%
C2h4	0%
C2H2	0%

TEMP	0%
H2O	100%
TIF	0%
RD	4.37%
EC	0%
H2	100%
DBDS	0%
CARRE	0%
GP	0%
DGAF	0%
CO	0%
CO2	0%
C2h4	0%
C2H2	0%

TEMP	0%
H2O	100%
TIF	0%
RD	83.45%
EC	0%
H2	100%
DBDS	0%
CARRE	0%
GP	0%
DGAF	9.33%
CO	14.79%
CO2	0%
C2h4	0%
C2H2	0%

TEMP	0%
H2O	100%
TIF	4.72%
RD	100%
EC	0%
H2	100%
DBDS	0%
CARRE	0%
GP	0%
DGAF	58.92%
CO	88.95%
CO2	0%
C2h4	0%
C2H2	0%

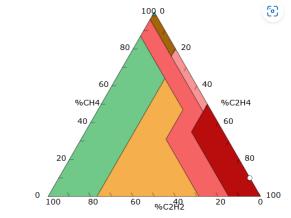
TEMP	0%
H2O	0%
TIF	0%
RD	0%
EC	0%
H2	0%
DBDS	0%
CARRE	0%
GP	0%
DGAF	0%
CO	0%
CO2	0%
C2h4	0%
C2H2	0%

2 - Guia IEEE Std C57.104™- 2008 para a Interpretação de gases dissolvidos no óleo isolante dos transformadores

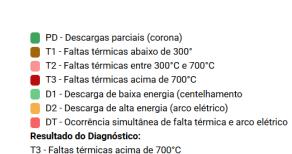
Foi desenvolvido um critério de quatro níveis para classificar os riscos aos transformadores, quando não há histórico de gás dissolvido, para operação contínua em vários níveis de gás combustível. O critério usa ambos, concentrações para gases separados e a concentração total de todos os gases combustíveis (TGC).

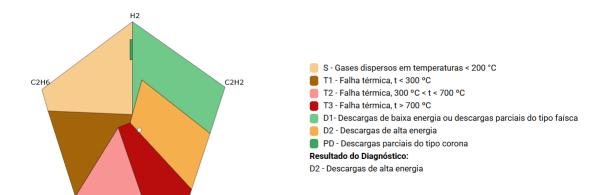
Tabela 1 - Principais limites de concentração de gases dissolvidos (ppm)

Status	H2	CH4	C2H2	C2H4	C2H6	со	CO2	TGC
Condição 01	100	120	1	50	65	350	2500	720
Condição 02	101-700	121-400	2-9	51-100	66-100	351-570	2500-4000	721-1920
Condição 03	701-1800	401-1000	10-35	101-200	101-150	571-1400	4001-10000	1921-4630
Condição 04	>1800	>1000	>35	>200	>150	>1400	>10000	>4630

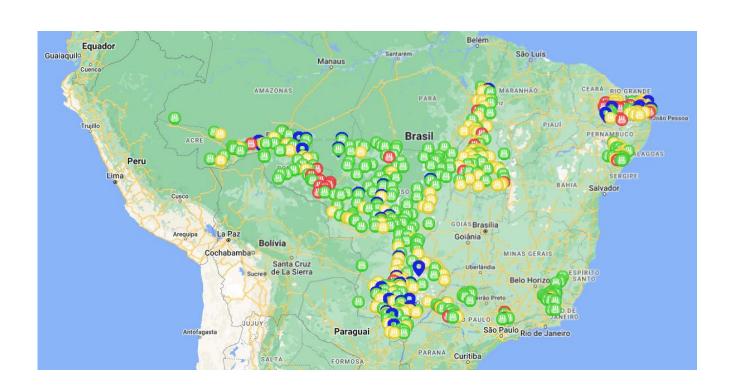

2-1 Resultados da última coleta:

Data Coleta	H2	CH4	C2H2	C2H4	C2H6	со	CO2	TGC
00.00.0004	Condição 02	Condição 01	Condição 01	Condição 01	Condição 01	Condição 02	Condição 02	Condição 04
20-03-2024	130	3	0	27	0	510	3713	4383





Triângulo de Duval 1


Petagono 1

CONCLUSÃO

- o O monitoramento de transformadores é essencial para a eficiência e segurança do sistema elétrico.
- Apesar dos desafios enfrentados, as tendências atuais apontam para um futuro mais conectado e inteligente, com oportunidades significativas para otimização.
- Investir em tecnologias inovadoras é fundamental para atender à demanda crescente por energia de forma sustentável e confiável

CONCLUSÃO

- Crescimento gradativo de sensores em operação, tanto em equipamentos novos quanto em equipamentos já energizados;
- Aumento no volume e na qualidade e disponibilidade de dados para estudos de engenharia;
- Desenvolvimento de sensores e plataforma cada vez mais sensíveis e precisos;
- Desenvolvimento de aprendizado de máquina, inteligência artificial e IoT com a melhoria das infraestruturas de automação, telecom e o 5G;

CONCLUSÃO

- Melhoria dos diagnósticos remotos;
- Melhoria na gestão do ciclo de vida dos transformadores;
- Redução de custos de sensores e plataformas de engenharia;
- O parecer do especialista continua sendo fundamental para o diagnóstico.

OBRIGADO!

Leonidas Chaves de Resende

leonidas@ufsj.edu.br

 $\underline{www.linkedin.com/in/leonidas\text{-}chaves\text{-}de\text{-}resende\text{-}68880534}$

https://ufsj.edu.br/leonidas/

INERGE inct de energia elétrica

